ASSESSMENT OF OPTICAL CLEARING INDUCED IMPROVEMENT OF LASER SPECKLE CONTRAST IMAGING

Author:

WANG JING1,ZHU DAN1,CHEN MIN2,LIU XIAOJING1

Affiliation:

1. Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China

2. Affiliated Hospital, Huazhong University of Science and Technology, Wuhan 430074, China

Abstract

Laser Speckle Contrast Imaging (LSCI) plays an important role in studying blood flow, but suffers from limited penetration depth of light in turbid tissue. The strong scattering of tissue obviously reduces the image contrast which decreases the sensitivity to flow velocity. Some image processing or optical clearing methods have been proposed to lessen the deficiency, but quantitative assessment of improvement is seldom given. In this study, LSCI was applied to monitor the blood flow through a capillary embedded within various tissue phantoms at depths of 0.25, 0.45, 0.65, 0.85 and 1.05 mm, and the flow velocity in capillary was controllable from 0 to 4 mm/s. Here, glycerol, a common optical clearing agent, was mixed with Intralipid at different volume ratio to make the reduced scattering coefficient of tissue phantom decrease from 13.00 to 0.50 cm-1. The quantitative analysis demonstrates that the optical clearing method can obviously enhance the image contrast, imaging depth, and sensitivity to blood flow velocity. Comparing the Laser Speckle Contrast Analysis methods and the optical clearing method, we find that for typical turbid tissue, the sensitivity to velocity estimated by the Laser Speckle Temporal Contrast Analysis (LSTCA) is twice of that by the Laser Speckle Spatial Contrast Analysis (LSSCA); while the sensitivity to velocity estimated by using the two analysis methods has a 10-fold increase, respectively, if addition of glycerol makes the reduced scattering coefficient of tissue phantom decrease by 30%. Combining the LSTCA and the optical clearing method, the sensitivity to flow velocity will be further enhanced.

Publisher

World Scientific Pub Co Pte Lt

Subject

Biomedical Engineering,Atomic and Molecular Physics, and Optics,Medicine (miscellaneous),Electronic, Optical and Magnetic Materials

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3