ADVANCED OPTICAL TECHNIQUES TO EXPLORE BRAIN STRUCTURE AND FUNCTION

Author:

SILVESTRI L.1,MASCARO A. L. ALLEGRA1,LOTTI J.1,SACCONI L.12,PAVONE F. S.1234

Affiliation:

1. European Laboratory for Nonlinear Spectroscopy (LENS), University of Florence, Italy

2. National Institute of Optics (INO-CNR), Sesto Fiorentino, Italy

3. Department of Physics, University of Florence, Italy

4. International Center for Computational, Neurophotonics — ICON Foundation, Florence, Italy

Abstract

Understanding brain structure and function, and the complex relationships between them, is one of the grand challenges of contemporary sciences. Thanks to their flexibility, optical techniques could be the key to explore this complex network. In this manuscript, we briefly review recent advancements in optical methods applied to three main issues: anatomy, plasticity and functionality. We describe novel implementations of light-sheet microscopy to resolve neuronal anatomy in whole fixed brains with cellular resolution. Moving to living samples, we show how real-time dynamics of brain rewiring can be visualized through two-photon microscopy with the spatial resolution of single synaptic contacts. The plasticity of the injured brain can also be dissected through cutting-edge optical methods that specifically ablate single neuronal processes. Finally, we report how nonlinear microscopy in combination with novel voltage sensitive dyes allow optical registrations of action potential across a population of neurons opening promising prospective in understanding brain functionality. The knowledge acquired from these complementary optical methods may provide a deeper comprehension of the brain and of its unique features.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Biomedical Engineering,Atomic and Molecular Physics, and Optics,Medicine (miscellaneous),Electronic, Optical and Magnetic Materials

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3