Determination of creatinine level in patient blood samples by Fourier NIR spectroscopy and multivariate analysis in comparison with biochemical assay

Author:

Barnea Zvi Hai12,Abookasis David3

Affiliation:

1. Nephrology Department, Edith Wolfson Hospital, Holon 5822012, Israel

2. Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv 6997801, Israel

3. Department of Electrical and Electronics Engineering, Ariel University, Ariel 4070000, Israel

Abstract

In this paper, in vivo spectra from 23 patients’ blood samples with various Creatinine (Cr) concentration levels ranging from 0.96 to 12.5 mg/dL were measured using Fourier transform near-infrared spectrometer (FT-NIRS) and spectrum quantitative analysis method. Since Cr undergoes passive filtration, it serves as a key biomarker of kidneys function via the estimation of glomerular filtration rate. Thus, increased blood Cr concentration reflects impaired renal function. After spectra pre-processing and outlier exclusion, a spectral model was developed based on partial least squares regression (PLSR) method, wherein Cr concentrations correlated with filtered NIR spectra across several peaks, where Cr is known to absorb NIR light. Several statistical metrics were applied to estimate the model efficiency during data analysis. Comparison of spectra-derived concentrations to reference Cr measurements by the current gold-standard Jaffe’s method held in hospital lab revealed a Cr prediction accuracy of 1.64[Formula: see text]mg/dL with good correlation of [Formula: see text]. Bland-Altman plots were used to compare between our calculations and reference lab values and reveal minimal bias between the two. The finding presented the potential of FT-NIRS coupled with PLSR technique for Cr determination.

Publisher

World Scientific Pub Co Pte Lt

Subject

Biomedical Engineering,Atomic and Molecular Physics, and Optics,Medicine (miscellaneous),Electronic, Optical and Magnetic Materials

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3