Development of calibration models for rapid determination of moisture content in rubber sheets using portable near-infrared spectrometers

Author:

Puttipipatkajorn Amorndej1,Puttipipatkajorn Amornrit2ORCID

Affiliation:

1. Department of Food Engineering, Faculty of Engineering at Kamphaeng Saen, Kasetsart University, Nakorn Pathom, 73140, Thailand

2. Department of Computer Engineering, Faculty of Engineering at Kamphaeng Saen, Kasetsart University, Nakorn Pathom, 73140, Thailand

Abstract

Rubber sheets are one of the primary products of natural rubber and are the main raw material in various rubber industries. The quality of a rubber sheet can be visually examined by holding it against clear light to inspect for any specks and impurities inside, but its moisture content is difficult to evaluate based on a visual inspection and this might lead to unfair trading. Herein, we developed a rapid, robust and nondestructive near-infrared spectroscopy (NIRS)-based method for moisture content determination in rubber sheets. A set of 300 rubber sheets were divided into a calibration (200 samples) and prediction groups (100 samples). The calibration set was used to develop NIRS calibration equation using different calibration models, Partial Least Square Regression (PLSR), Least Square Support Vector Machine (LS-SVM) and Artificial Neural Network (ANN). Among the models investigated, the ANN model with the first derivative of spectral preprocessing presented the best prediction with a coefficient of determination ([Formula: see text] of 0.993, root mean square error of calibration (RMSEC) of 0.126% and root mean square error of prediction (RMSEP) of 0.179%. The results indicated that the proposed NIRS-ANN model will be able to reduce human error and provide a highly accurate estimate of the moisture content in a rubber sheet compared to traditional wet chemistry estimation methods according to AOAC standards.

Publisher

World Scientific Pub Co Pte Lt

Subject

Biomedical Engineering,Atomic and Molecular Physics, and Optics,Medicine (miscellaneous),Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3