Real-time 3D UAV Path Planning in Dynamic Environments with Uncertainty

Author:

Zammit Christian1ORCID,van Kampen Erik-Jan1

Affiliation:

1. Control & Simulation Department, Delft University of Technology, Kluyverweg 1, 2629 HS, Delft, The Netherlands

Abstract

The integration of Unmanned Aerial Vehicles (UAVs) is being proposed in a spectrum of applications varying from military to civil. In these applications, UAVs are required to safely navigate in real-time in dynamic and uncertain environments. Uncertainty can be present in both the UAV itself and the environment. Through a literature study, this paper first identifies, quantifies and models different uncertainty sources using bounding shapes. Then, the UAV model, path planner parameters and four scenarios of different complexity are defined. To investigate the effect of uncertainty on path planning performance, uncertainty in obstacle position and orientation and UAV position is varied between 2% and 20% for each uncertainty source first separately and then concurrently. Results show a deterioration in path planning performance with the inclusion of both uncertainty types for all scenarios for both A* and the Rapidly-Exploring Random Tree (RRT) algorithms, especially for RRT. Faster and shorter paths with similar same success rates (>95%) result for the RRT algorithm with respect to the A* algorithm only for simple scenarios. The A* algorithm performs better than the RRT algorithm in complex scenarios.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Control and Optimization,Aerospace Engineering,Automotive Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3