Design and Testing of a Vertical Take-Off and Landing UAV Optimized for Carrying a Hydrogen Fuel Cell with a Pressure Tank

Author:

De Wagter Christophe1ORCID,Remes Bart1,Ruijsink Rick1,van Tienen Freek1,van der Horst Erik1

Affiliation:

1. Micro Air Vehicle Laboratory, Delft University of Technology, Kluyverweg 1, 2629HS Delft, The Netherlands

Abstract

Flight endurance is still a bottleneck for many types of unmanned air vehicle (UAV) applications. While battery technology improves over the years, for flights that last an entire day, batteries are still insufficient. Hydrogen-powered fuel cells offer an interesting alternative but pose stringent requirements on the platform. The required cruise power must be sufficiently low and flying with a pressurized tank poses new safety and shape constraints. This paper proposes a hybrid transitioning UAV that is optimized towards carrying a hydrogen tank and fuel cell. Hover is achieved using 12 redundant propellers connected to a dual Controller Area Network (CAN) bus and dual power supply. Forward flight is achieved using a tandem wing configuration. The tandem wing not only minimizes the required wingspan to minimize perturbations from gusts during hover, but it also handles the very large pitch inertia of the inline pressure tank and fuel cell very well. During forward flight, 8 of the 12 propellers are folded while the tip propellers counteract the tip vortexes. The propulsion is tested on a force balance and the selected fuel cell is tested in the lab. Finally, a prototype is built and tested in-flight using battery power. Stable hover, good transitioning properties, and stable forward flight are demonstrated.

Publisher

World Scientific Pub Co Pte Lt

Subject

Control and Optimization,Aerospace Engineering,Automotive Engineering,Control and Systems Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3