RECENT RESEARCH DEVELOPMENTS IN DUCTILE FRACTURE OF STEEL BRIDGE STRUCTURES

Author:

GE HANBIN1,KANG LAN1,HAYAMI KEI1

Affiliation:

1. Department of Civil Engineering, Meijo University, Nagoya 468-8502, Japan

Abstract

Results from 23 cyclic tests, including 18 cantilever-typed steel bridge piers and five beam-to-column connections, are presented to investigate their ductile fracture behavior as related to the seismic design of steel bridge structures, and based on shell and fiber models, two evaluation methods of ductile crack initiation are proposed. The effect of various parameters, including plate width-thickness and column slenderness ratios, cross-section shape, loading history, repeated earthquakes and initial weld defect is investigated experimentally. Among these parameters, width-thickness ratio, loading history and initial weld defect are shown to have significant influence on ductile fracture behavior. The test data suggest that for unstiffened box specimens, current seismic design provision limits on ultimate strain may not provide sufficient ductility for seismic design. On the other hand, based on the experimental results, two damage index-based evaluation methods respectively using shell model and fiber model are successfully employed to predict ductile fracture of steel bridge structures. Comparisons between experimental and analytical results show that they can predict ductile fracture behavior with good accuracy across the specimen geometries, steel types, loading histories and initial weld defects.

Publisher

World Scientific Pub Co Pte Lt

Subject

Geophysics,Geotechnical Engineering and Engineering Geology,Oceanography

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3