Affiliation:
1. College of Aerospace and Civil Engineering, Harbin Engineering University, Harbin 150001, P. R. China
2. Department of Civil Engineering, Nagoya Institute of Technology, Nagoya 466-8555, Japan
Abstract
Lack of corrosion resistance and post-earthquake resilience will inevitably result in a considerable loss of function for concrete bridge piers with conventional steel reinforcement. As an alternative to steel reinforcement, shape memory alloy (SMA)-based reinforcing bars are emerging for improving the seismic performance of concrete bridge piers. This paper presents an assessment of concrete bridge piers with different reinforcement alternatives, namely steel reinforcement, steel-SMA hybrid reinforcement and SMA reinforcement. The bridge piers with different reinforcements are designed having a same lateral resistance, or in other words, the flexural capacities of plastic hinges are designed equal. Based on this, numerical studies are conducted to investigate the relative performance of different bridge piers under seismic loadings. Seismic responses in terms of the maximum drift, residual drift as well as dissipated energy are obtained and compared. The results show that all the three cases with different reinforcements exhibit similar maximum drifts for different earthquake magnitudes. The SMA-reinforced bridge pier has the smallest post-earthquake residual displacement and dissipated energy, whereas the steel-reinforced pier shows the opposite responses. The steel-SMA hybrid reinforcement can achieve a reasonable balance between the residual deformation and energy dissipation.
Funder
National Natural Science Foundation of China
Fundamental Research Funds for the Central Universities of China
Heilongjiang Natural Science Foundation
Publisher
World Scientific Pub Co Pte Lt
Subject
Geophysics,Geotechnical Engineering and Engineering Geology,Oceanography
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献