IMPACT OF EARTHQUAKE ON DEBRIS FLOWS — A CASE STUDY ON THE WENCHUAN EARTHQUAKE

Author:

CHEN NING-SHENG12,HU GUI-SHENG123,DENG MING-FENG123,ZHOU WEI123,YANG CHENG-LIN12,HAN D.4,DENG JIAN-HUI5

Affiliation:

1. Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, China, 610041, China

2. Key Lab of Mountain Hazards and Surface Processes, Chinese Academy of Sciences, Chengdu, China, 610041, China

3. Graduate University of Chinese Academy of Sciences, Beijing 100049, China

4. Department of Civil Engineering, University of Bristol, UK

5. College of Water Resources and Hydropower, Sichuan University, Chengdu, China, 610065, China

Abstract

This paper describes a study about the impact of earthquakes on debris flows with a focus on the Great Wenchuan Earthquake 2008 in China. The land form, precipitation, and source material are the three key factors for debris flow initiation in the Wenchuan surrounding area. Classifications and examples of four types of debris flow initiation triggering (gully triggering, slope triggering, liquefaction triggering, and gully erosion triggering) have been presented. The initiation mechanisms are attributed to hydraulic and geomechanical aspects. The actual debris flow cases linked with the Great Wenchuan Earthquake and other earthquakes in China have been used to illustrate the increased magnitudes of debris flows due to a large amount of loose materials created by the seismic actions. The critical precipitation for debris flows is reduced by the earthquake. It is predicted that the impact of the Great Wenchuan Earthquake on the local debris flows would be significant in the next 5–6 years, and much less in the following years (up to 20 years). Finally, the debris flow system will reach a relative stable stage. This prediction is based on the historical observations at other earthquake areas and the qualitative analysis on debris flow initiation mechanisms.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Geophysics,Geotechnical Engineering and Engineering Geology,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3