Alpine Catchments’ Hazard Related to Subaerial Sediment Gravity Flows Estimated on Dominant Lithology and Outcropping Bedrock Percentage

Author:

Tiranti Davide1ORCID

Affiliation:

1. Regional Agency for Environmental Protection of Piemonte (Arpa Piemonte), 10135 Turin, Italy

Abstract

Sediment gravity flows (SGFs) cause serious damage in the Alpine regions. In the literature, several methodologies have been elaborated to define the main features of these phenomena, mainly considering the rheological features of the flow processes by laboratory experiments or by flow simulation using 2D or 3D propagation models or considering a single aspect, such as the morphometric parameters of catchments in which SGFs occur. These very targeted approaches are primarily linked to the definition of SGFs’ propagation behavior or to identify the predisposing role played by just one feature of catchments neglecting other complementary aspects regarding phenomena and the environment in which SGFs can occur. Although the research aimed at the quantification of some parameters that drive the behavior of SGFs provides good results in understanding the flow mechanisms, it does not provide an exhaustive understanding of the overall nature of these phenomena, including their trigger conditions and a complete view of predisposing factors that contribute to their generation. This paper presents a research work based on the collection and cross-analysis of lithological, geomechanical, geomorphological and morphometrical characteristics of Alpine catchments compared with sedimentological and morphological features of SGF deposits, also taking in to account the rainfall data correlation with historical SGF events. A multidisciplinary approach was implemented, aiming at quantifying SGF causes and characteristics starting from the catchments’ features where the phenomena originate in a more exhaustive way. The study used 78 well-documented catchments of Susa Valley (Western Italian Alps), having 614 historical flow events reported, that present a great variability in geomorphological and geological features. As the main result, three catchment groups were recognized based on the dominant catchment bedrock’s lithology characteristics that influence the SGFs’ rheology, sedimentological and depositional features, triggering rainfall values, seasonality, occurrence frequency and alluvial fan architecture. The classification method was also compared with the catchments’ morphometry classification, demonstrating that the fundamental role in determining the type of flow process that can most likely occur in a given catchment is played by the bedrock outcropping percentage, regardless of the results provided by the morphometric approach. The analysis of SGF events through the proposed method led to a relative estimate of the hazard degree of these phenomena distinguished by catchment type.

Publisher

MDPI AG

Reference62 articles.

1. Campbell, R.H. (1975). Soil slips, debris flows, and rainstorms in the Santa Monica Mountains and vicinity, southern California. US Geological Survey Professional Paper 851, U.S. Government Printing Office.

2. The rainfall intensity-duration control of shallow landslides and debris flow;Caine;Geogr. Ann. Ser. A Phys. Geogr.,1980

3. Landslide susceptibility as a function of critical rainfall amount in Piedmont basin (Northwestern Italy);Govi;Stud. Geomorph. Carpatho-Balc.,1980

4. Assessing debris-flow hazard in a watershed in Taiwan;Lin;Eng. Geol.,2002

5. Jakob, M., and Hungr, O. (2005). Debris-Flow Hazards and Related Phenomena, Springer.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3