Artificial intelligence to link environmental endocrine disruptors (EEDs) with bone diseases

Author:

Al-Utaibi Khaled A.1,Idrees M.2,Sohail Ayesha2,Arif Fatima2,Nutini Alessandro3,Sait Sadiq M.4

Affiliation:

1. Computer Science and Software Engineering Department, University of Ha’il, Ha’il, Saudi Arabia

2. Department of Mathematics, Comsats University Islamabad, Lahore 54000, Pakistan

3. Center for Study in Motor Science, 94 via di Tiglio, loc. Arancio, 55100, Lucca, Italy

4. Center for Communications and IT Research, Research Institute, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia

Abstract

Our endocrine system is not only complex, but is also enormously sensitive to the imbalances caused by the environmental stressors, extreme weather situation, and other geographical factors. The endocrine disruptions are associated with the bone diseases. Osteoporosis is a bone disorder that occurs when bone mineral density and bone mass decrease. It affects women and men of all races and ethnic groups, causing bone weakness and the risk of fractures. Environmental stresses are referred to physical, chemical, and biological factors that can impact species productivity. This research aims to examine the impact of environmental stresses on bone diseases like osteoporosis and low bone mass (LBM) in the United States (US). For this purpose, we use an artificial neural network model to evaluate the correlation between the data. A multilayer neural network model is constructed using the Levenberg–Marquardt training algorithm, and its performance is evaluated by mean absolute error and coefficient of correlation. The data of osteoporosis and LBM cases in the US are divided into three groups, including gender group, age group, and race/ethnicity group. Each group shows a positive correlation with environmental stresses and thus the endocrinology.

Funder

NRPU

Publisher

World Scientific Pub Co Pte Ltd

Subject

Computer Science Applications,Modelling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3