RMAU-Net: Breast Tumor Segmentation Network Based on Residual Depthwise Separable Convolution and Multiscale Channel Attention Gates

Author:

Yuan Sheng1,Qiu Zhao1,Li Peipei1,Hong Yuqi1

Affiliation:

1. School of Computer Science and Technology, Hainan University, Haikou 570228, China

Abstract

Breast cancer is one of the most common female diseases, posing a great threat to women’s health, and breast ultrasound imaging is a common method for breast cancer diagnosis. In recent years, U-Net and its variants have dominated the medical image segmentation field with their excellent performance. However, the existing U-type segmentation networks have the following problems: (1) the design of the feature extractor is complicated, and the calculation difficulty is increased; (2) the skip connection operation simply combines the features of the encoder and the decoder, without considering both spatial and channel dimensions; (3) during the downsampling phase, the pooling operation results in the loss of feature information. To address the above deficiencies, this paper proposes a breast tumor segmentation network, RMAU-Net, that combines residual depthwise separable convolution and a multi-scale channel attention gate. Specifically, we designed the RDw block, which has a simple structure and a larger sensory field, to overcome the localization problem of convolutional operations. Meanwhile, the MCAG module is designed to correct the low-level features in both spatial and channel dimensions and assist the high-level features to recover the up-sampling and pinpoint non-regular breast tumor features. In addition, this paper used the Patch Merging operation instead of the pooling method to prevent the loss of breast ultrasound image information. Experiments were conducted on two breast ultrasound datasets, Dataset B and BUSI, and the results show that the method in this paper has superior segmentation performance and better generalization.

Funder

Education Department of Hainan Province

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3