A Study of Heat and Mass Transfer of Nanofluids Arising in Biosciences Using Buongiorno's Model

Author:

Mohyud-Din Syed Tauseef1,Usman Muhammad2,Bin-Mohsin Bandar3

Affiliation:

1. Department of Mathematics, Faculty of Sciences, HITEC University, Taxila Cantt, Pakistan

2. School of Mathematical Science, Peking University, Beijing 100871, P. R. China

3. Department of Mathematics, College of Sciences, King Saud University, Riyadh 12372, Saudi Arabia

Abstract

Flow in converging/diverging channels under the influence of external magnetic field is presented. The walls of the channels are taken to be stretching/shrinking. Buongiorno's model is used to formulate the problem for nanofluids. It is to be highlighted that such models arise frequently in biosciences. The equations governing the flow are transformed to a set of nonlinear ordinary differential equations by employing appropriate similarity transformations. Two efficient techniques variational iteration method (VIM) and variation of parameters method (VPM) are employed to tackle the complexity and nonlinearity of the presented model. Comprehensive discussions on the results obtained are provided. Comparison of the obtained results with existing literature re-confirms the credibility of solution obtained via VIM and VPM.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computational Mathematics,Computer Science (miscellaneous)

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3