Double-diffusive Hamel–Jeffrey flow of nanofluid in a convergent/divergent permeable medium under zero mass flux

Author:

Ahmad S.,Farooq M.

Abstract

AbstractIn the recent era, the nanofluid's transportation due to the Jeffrey–Hemal flow phenomenon (i.e., carrying fluid through a converging/diverging channel) has significant applications in numerous engineering and science technologies. Therefore, multi-disciplinary evolution and research motivated us to present current attempt. The aim of this attempt is to present Jeffrey–Hamel mechanism of the nanofluid through non-parallel channel under thermally balance non-Darcy permeable medium impacts. The nanomaterial is represented using the Buongiorno nanofluid model. The investigation also includes zero mass flux impacts as well as variable rheological fluid properties. The influences of temperature jump are also encountered in the current analysis. The governing flow expressions under the Jeffrey–Hemal analysis are made dimensionless utilizing the similarity variables. The dimensionless equations are then solved using the analytical scheme (homotopy method) and the obtained series solutions are convergent. The influences of the involved parameters on concerned profiles are investigated through graphs. Force of drag, Nusselt and Sherwood numbers are elaborated graphically. In this analysis, intensification in Prandtl number enhances the heat transfer rate whereas decrement is seen in heat transfer rate for larger thermal slip parameter. Further, mass diffusivity parameter adversely affects the mass transfer rate. The current analysis incorporates numerous industrial and technological processes including transportation, material synthesis, microfluidics, high-power Xrays, biomedical, solid-state lighting, microelectronics, scientific measurement, medicine, molten polymers extrusion via converging dies, cold drawing operation related to polymer industry etc.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3