A Fast Multipole Boundary Element Method for Three-Dimensional Half-Space Acoustic Wave Problems Over an Impedance Plane

Author:

Wu Haijun1,Liu Yijun2,Jiang Weikang1,Lu Wenbo3

Affiliation:

1. State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University Shanghai 200240, P. R. China

2. Mechanical Engineering, University of Cincinnati, Cincinnati, Ohio 45221-0072, USA

3. Shanghai Marine Equipment Research Institute, Shanghai 200031, P. R. China

Abstract

A high-frequency fast multipole boundary element method (FMBEM) based on the Burton–Miller formulation is proposed for three-dimensional acoustic wave problems over an infinite plane with impedance boundary conditions. The Green's function for the sound propagation over an impedance plane is employed explicitly in the boundary integral equation (BIE). To deal with the integral appearing in the half-space Green's function, the downward pass in the FMBEM is divided into two parts to compute contributions from the real domain to the real and image domains, respectively. A piecewise analytical method is proposed to compute the moment-to-local (M2L) translator from the real domain to the image domain accurately. An algorithm based on the multi-level tree structure is designed to compute the M2L translators efficiently. Correspondingly, the direct coefficient can also be computed efficiently by taking advantage of the algorithm of the efficient M2L. A flexible generalized minimal residual (fGMRES) is applied to accelerating the solution when the convergence is very slow. Numerical examples are presented to demonstrate the accuracy and efficiency of the developed FMBEM. Good solutions and high acceleration ratios compared with the conventional boundary element method clearly show the potential of the FMBEM for large-scale 3D acoustic wave problems over an infinite impedance plane which are of practical significance.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computational Mathematics,Computer Science (miscellaneous)

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3