Affiliation:
1. Centre for Advanced Computations in Engineering Science, Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576, Singapore
2. Singapore-MIT Alliance (SMA), E4-04-10, 4 Engineering Drive 3, Singapore 117576, Singapore
Abstract
This paper presents a generalized gradient smoothing technique, the corresponding smoothed bilinear forms, and the smoothed Galerkin weakform that is applicable to create a wide class of efficient numerical methods with special properties including the upper bound properties. A generalized gradient smoothing technique is first presented for computing the smoothed strain fields of displacement functions with discontinuous line segments, by "rudely" enforcing the Green's theorem over the smoothing domain containing these discontinuous segments. A smoothed bilinear form is then introduced for Galerkin formulation using the generalized gradient smoothing technique and smoothing domains constructed in various ways. The numerical methods developed based on this smoothed bilinear form will be spatially stable and convergent and possess three major important properties: (1) it is variationally consistent, if the solution is sought in a Hilbert space; (2) the stiffness of the discretized model will be reduced compared to the model of the finite element method (FEM) and often the exact model, which allows us to obtain upper bound solutions with respect to both the FEM solution and the exact solution; (3) the solution of the numerical method developed using the smoothed bilinear form is less insensitive to the quality of the mesh, and triangular meshes can be used perfectly without any problems. These properties have been proved, examined, and confirmed by the numerical examples. The smoothed bilinear form establishes a unified theoretical foundation for a class of smoothed Galerkin methods to analyze solid mechanics problems for solutions of special and unique properties: the node-based smoothed point interpolation method (NS-PIM), smoothed finite element method (SFEM), node-based smoothed finite element method (N-SFEM), edge-based smoothed finite element method (E-SFEM), cell-based smoothed point interpolation method (CS-PIM), etc.
Publisher
World Scientific Pub Co Pte Lt
Subject
Computational Mathematics,Computer Science (miscellaneous)
Cited by
351 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献