Using Advanced "Birth and Death" APDL Code to Analyze the Thermal Transient Problem of Mass Concrete during Construction Phases

Author:

Bui Anh Kiet,Nguyen Trong Chuc,Nguyen Thi Thuy Bich

Abstract

For finite element analysis of the thermal transfer problem, solving the Boundary Condition (BC) change versus time appropriately, according to the concrete construction phases, is an important factor affecting the accuracy of the analysis result. The contact BC may change versus time from the convective boundary to the contact boundary between two bodies. In this paper, a technique using the "Birth and Death" element is applied to the heat transfer boundary of a mass concrete pier versus the time of construction phases. From the obtained results, it was concluded that the temperature distribution in the pier body can be determined according to the phases of construction. The achieved temperature field gives an input to the stress analysis allowing the determination of the possibility of thermal cracking of the structure and give appropriate alternatives to prevent thermal cracks.

Publisher

Engineering, Technology & Applied Science Research

Reference21 articles.

1. J. Cheng, G. R. Liu, T.-C. Li, S.-C. Wu, and G.-Y. Zhang, "ES-PIM with Cell Death and Birth Technique for Simulating Heat Transfer in Concrete Dam Construction Process," Journal of Engineering Mechanics, vol. 138, no. 1, pp. 133–142, Jan. 2012.

2. J. Noorzaei, H. R. Ghafouri, and R. Amini, "Investigation of influence of placement schedule on the thermal stresses of RCC dams, using finite element analysis," in RCC Dams - Roller Compacted Concrete Dams, Routledge, 2003.

3. M. Jaroniek and T. Niezgodziński, "Element Birth and Death Method Application to Lamellar Crack Analysis," Mechanics and Mechanical Engineering vol. 19, no. 1, pp. 63-75, 2015.

4. J. A. Bather, "Two non-linear birth and death processes," Cambridge University Press, 1962.

5. L. Tong, S. Li, and J. Xiong, "Material parameter modeling and solution technique using birth–death element for notched metallic panel repaired with bonded composite patch," Chinese Journal of Aeronautics, vol. 27, no. 2, pp. 445–452, Apr. 2014.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3