Central limit theorems for the real eigenvalues of large Gaussian random matrices

Author:

Simm N. J.1ORCID

Affiliation:

1. Mathematics Institute, University of Warwick, Coventry CV4 7AL, UK

Abstract

Let [Formula: see text] be an [Formula: see text] real matrix whose entries are independent identically distributed standard normal random variables [Formula: see text]. The eigenvalues of such matrices are known to form a two-component system consisting of purely real and complex conjugated points. The purpose of this paper is to show that by appropriately adapting the methods of [E. Kanzieper, M. Poplavskyi, C. Timm, R. Tribe and O. Zaboronski, Annals of Applied Probability 26(5) (2016) 2733–2753], we can prove a central limit theorem of the following form: if [Formula: see text] are the real eigenvalues of [Formula: see text], then for any even polynomial function [Formula: see text] and even [Formula: see text], we have the convergence in distribution to a normal random variable [Formula: see text] as [Formula: see text], where [Formula: see text].

Funder

Leverhulme Trust

Publisher

World Scientific Pub Co Pte Lt

Subject

Discrete Mathematics and Combinatorics,Statistics, Probability and Uncertainty,Statistics and Probability,Algebra and Number Theory

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Local central limit theorem for real eigenvalue fluctuations of elliptic GinOE matrices;Electronic Communications in Probability;2024-01-01

2. Central limit theorem for the complex eigenvalues of Gaussian random matrices;Electronic Communications in Probability;2024-01-01

3. Finite size corrections for real eigenvalues of the elliptic Ginibre matrices;Random Matrices: Theory and Applications;2024-01

4. Universality in the number variance and counting statistics of the real and symplectic Ginibre ensemble;Journal of Physics A: Mathematical and Theoretical;2023-11-15

5. Fluctuations and correlations for products of real asymmetric random matrices;Annales de l'Institut Henri Poincaré, Probabilités et Statistiques;2023-11-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3