Abstract
AbstractIn this article, we compute and compare the statistics of the number of eigenvalues in a centred disc of radiusRin all three Ginibre ensembles. We determine the mean and variance as functions ofRin the vicinity of the origin, where the real and symplectic ensembles exhibit respectively an additional attraction to or repulsion from the real axis, leading to different results. In the large radius limit, all three ensembles coincide and display a universal bulk behaviour ofO(R2)for the mean, andO(R) for the variance. We present detailed conjectures for the bulk and edge scaling behaviours of the real Ginibre ensemble, having real and complex eigenvalues. For the symplectic ensemble we can go beyond the Gaussian case (corresponding to the Ginibre ensemble) and prove the universality of the full counting statistics both in the bulk and at the edge of the spectrum for rotationally invariant potentials, extending a recent work which considered the mean and the variance. This statistical behaviour coincides with the universality class of the complex Ginibre ensemble, which has been shown to be associated with the ground state of non-interacting fermions in a two-dimensional rotating harmonic trap. All our analytical results and conjectures are corroborated by numerical simulations.
Funder
Deutsche Forschungsgemeinschaft
POSCO TJ Park Foundation
Samsung Science and Technology Foundation
Subject
General Physics and Astronomy,Mathematical Physics,Modeling and Simulation,Statistics and Probability,Statistical and Nonlinear Physics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献