Universality in the number variance and counting statistics of the real and symplectic Ginibre ensemble

Author:

Akemann GernotORCID,Byun Sung-SooORCID,Ebke MarkusORCID,Schehr GrégoryORCID

Abstract

AbstractIn this article, we compute and compare the statistics of the number of eigenvalues in a centred disc of radiusRin all three Ginibre ensembles. We determine the mean and variance as functions ofRin the vicinity of the origin, where the real and symplectic ensembles exhibit respectively an additional attraction to or repulsion from the real axis, leading to different results. In the large radius limit, all three ensembles coincide and display a universal bulk behaviour ofO(R2)for the mean, andO(R) for the variance. We present detailed conjectures for the bulk and edge scaling behaviours of the real Ginibre ensemble, having real and complex eigenvalues. For the symplectic ensemble we can go beyond the Gaussian case (corresponding to the Ginibre ensemble) and prove the universality of the full counting statistics both in the bulk and at the edge of the spectrum for rotationally invariant potentials, extending a recent work which considered the mean and the variance. This statistical behaviour coincides with the universality class of the complex Ginibre ensemble, which has been shown to be associated with the ground state of non-interacting fermions in a two-dimensional rotating harmonic trap. All our analytical results and conjectures are corroborated by numerical simulations.

Funder

Deutsche Forschungsgemeinschaft

POSCO TJ Park Foundation

Samsung Science and Technology Foundation

Publisher

IOP Publishing

Subject

General Physics and Astronomy,Mathematical Physics,Modeling and Simulation,Statistics and Probability,Statistical and Nonlinear Physics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Spectral moments of the real Ginibre ensemble;The Ramanujan Journal;2024-06-21

2. Linear statistics for Coulomb gases: higher order cumulants;Journal of Physics A: Mathematical and Theoretical;2024-04-03

3. Disk counting statistics near hard edges of random normal matrices: The multi-component regime;Advances in Mathematics;2024-04

4. Finite size corrections for real eigenvalues of the elliptic Ginibre matrices;Random Matrices: Theory and Applications;2024-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3