BRIGHT-LIKE SOLITON SOLUTION IN QUASI-ONE-DIMENSIONAL BEC IN THIRD ORDER BY INTERACTION RADIUS

Author:

ANDREEV P. A.1,KUZ'MENKOV L. S.2

Affiliation:

1. Department of General Physics, Faculty of Physics, Moscow State University, Moscow, Russian Federation, Russia

2. Department of Theoretical Physics, Physics Faculty, Moscow State University, Moscow, Russian Federation, Russia

Abstract

Nonlinear Schrödinger equations and corresponding quantum hydrodynamic (QHD) equations are widely used in studying of ultracold boson–fermion mixtures and superconductors. In this article, we show that more exact account of interaction in Bose–Einstein condensate (BEC), in comparison with the Gross–Pitaevskii (GP) approximation, leads to the existence of a new type of solitons. We use a set of QHD equations in the third order by the interaction radius (TOIR), which corresponds to the GP equation in the first order by the interaction radius. We analytically obtain a soliton solution which is an area of increased atom concentration. The conditions for existence of the soliton are studied. It is shown what solution exists if the interaction between the particles is repulsive. Particle concentration has been achieved experimentally for the BEC is of order of 1012–1014 cm-3. In this case the solution exists if the scattering length is of the order of 1 μm, which can be reached using the Feshbach resonance. It is one of the limit case of existence of the solution. The corresponding scattering length decrease with the increasing of concentration of particles. We have shown that account of interaction up to TOIR approximation leads to new effects. The investigation of effects in the TOIR approximation gives a more detail information on interaction potentials between the atoms and can be used for a more detail investigation of the interatomic potential structure.

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3