Affiliation:
1. School of Mechanical Engineering, Xi’an Shiyou University, Xi’an 710065, China
2. School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, China
Abstract
In this paper, a novel metal-matrix phononic crystal with a low-frequency, broad and complete, locally-resonant band gap, which includes the in-plane and out-of-plane band gaps, is investigated numerically. The proposed structure consists of double-sided single “hard” cylinder stubs, which are deposited on a two-dimensional locally-resonant phononic-crystal plate that consists of an array of rubber fillers embedded in a steel plate. Our results indicate that both the out-of-plane band gap and the in-plane band gap increase after introducing single “hard” cylinder stubs. More specifically, the out-of-plane band gap is increased by the out-of-plane analogous-rigid mode, while the in-plane band gap is increased by the in-plane analogous-rigid mode. The out-of-plane and the in-plane analogous-rigid mode are formed after introduction of the single “hard” cylinder stub. As a result, a broad, complete locally-resonant band gap in the low frequency is obtained due to the broad in-plane and out-of-plane band gaps overlapping. Compared to the classical double-sided stubbed metal-matrix phononic-crystal plate, the absolute bandwidth of the complete band gap is increased by a factor of 4.76 in the proposed structure. Furthermore, the effect of simple “hard” stubs on complete band gaps is investigated. The results show that the location of the complete band gaps can be modulated using a low frequency, and the bandwidth can be extended to a larger frequency range using different “hard” stubs. The new structure provides an effective way for metal-matrix phononic crystals to obtain broad and complete locally-resonant band gaps in the low-frequency range, which has many applications for low-frequency vibration reduction.
Funder
the Project of National Science Foundation of China
Publisher
World Scientific Pub Co Pte Lt
Subject
Condensed Matter Physics,Statistical and Nonlinear Physics
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献