Parametric analysis: Compressibility of rubber on bandgap for phononic crystals

Author:

Lyu Muyun1ORCID,Xu Guxin1,Cheng Baozhu12ORCID,Xia Zhaowang1ORCID

Affiliation:

1. School of Energy and Power, Jiangsu University of Science and Technology, Zhenjiang 212003, China

2. Laboratory of Ocean Acoustics and Sensing, School of Marine Science and Technology, Northwestern Polytechnical University, Xi’an 710072, China

Abstract

The capacity of Phononic crystals (PCs) to form bandgaps (BGs) that limit the transmission of elastic/acoustic waves is a key property that is particularly beneficial for vibration/sound isolation and signal processing. In this work, a parametric analysis of Poisson’s ratio of rubber, and the density, geometry and size of scatterer on the BGs of porous, solid/solid, fluid/solid and solid/fluid PCs is presented. Based on the simulation results, it is found that the width of the first absolute bandgaps (FABGs) of porous PCs is not necessarily proportional to the porosity due to the pore shape; when Poisson’s ratio of compressible and incompressible rubber is increased, the FABG width of porous PC decreases dramatically. In addition, the FABGs of solid/solid PCs are strongly dependent on whether the rubber is a matrix or scatterer; the fluctuation of the FABGs is also highly related to the density of the solid. Fluid–structure PCs have smaller FABGs than porous and solid/solid PCs, and these FABGs usually occur within higher-order energy bands. Rubber compressibility significantly affects the FABGs of porous and solid/solid PCs, but almost not fluid-structural PCs. The results presented in this work offer guidance to tune the BG and design acoustic devices in various practical applications such as noise and vibration insulators.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3