Effect of electric field on Fe2O3 nanowire growth during thermal oxidation

Author:

Zhao Chunwang12,Xue Yannan2,Jin Yongjun2

Affiliation:

1. College of Arts and Sciences, Shanghai Maritime University, Shanghai 201306, China

2. College of Science, Inner Mongolia University of Technology, Hohhot 010051, China

Abstract

A direct current of 5 A was applied to narrow strips of iron foil in air to synthesize iron oxide nanowires (NWs) via thermal oxidation route of resistive heating. Transverse electric fields of 0–4000 V/m were applied perpendicularly to the surface of the iron foil during thermal oxidations. Results showed that the Fe2O3 NW array can grow perpendicularly on that surface by using this kind of thermal oxidation method. Transverse electric fields applied during thermal oxidation significantly affected the morphology of the Fe2O3 NW array. With increasing strength of the transverse electric fields, the Fe2O3 NWs became much longer, thinner and denser in distribution, and the diameters became more uniform. Furthermore, solid state based-up diffusion growth mechanism for the Fe2O3 NW array was confirmed by thermal oxidation.

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3