Rapid Growth of Metal–Metal Oxide Core–Shell Structures through Joule Resistive Heating: Morphological, Structural, and Luminescence Characterization

Author:

Ramos-Justicia Juan Francisco1ORCID,Urbieta Ana1ORCID,Fernández Paloma1ORCID

Affiliation:

1. Department of Materials Physics, Faculty of Physics, Complutense University of Madrid, 28040 Madrid, Spain

Abstract

The aim of this study is to prove that resistive heating enables the synthesis of metal/metal oxide composites in the form of core–shell structures. The thickness and morphology of the oxide layer depends strongly on the nature of the metal, but the influences of parameters such as the time and current profiles and the presence of an external field have also been investigated. The systems chosen for the present study are Zn/ZnO, Ti/TiO2, and Ni/NiO. The characterization of the samples was performed using techniques based on scanning electron microscopy (SEM). The thicknesses of the oxide layers varied from 10 μm (Zn/ZnO) to 50 μm (Ni/NiO). In the case of Zn- and Ti-based composites, the growth of nanostructures on the oxide layer was observed. Micro- and nanoneedles formed on the ZnO layer while prism-like structures appeared on the TiO2. In the case of the NiO layer, micro- and nanocrystals were observed. Applying an external electric field seemed to align the ZnO needles, whereas its effect on TiO2 and NiO was less appreciable, principally affecting the shape of their grain boundaries. The chemical compositions were analysed using X-ray spectroscopy (EDX), which confirmed the existence of an oxide layer. Structural information was obtained by means of X-ray diffraction (XRD) and was later checked using Raman spectroscopy. The oxide layers seemed to be crystalline and, although some non-stoichiometric phases appeared, the stoichiometric phases were predominant; these were wurtzite, rutile, and cubic for Zn, Ti, and Ni oxides, respectively. The photoluminescence technique was used to study the distribution of defects on the shell, and mainly visible bands (2–2.5 eV), attributed to oxygen vacancies, were present. The near-band edges of ZnO and TiO2 were also observed around 3.2–3.3 eV.

Funder

Comunidad de Madrid

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3