Traffic accident and emission reduction through intermittent release measures for heavy fog weather

Author:

Shi Jing1,Tan Jin-Hua1

Affiliation:

1. Institute of Transportation Engineering, Tsinghua University, Beijing 100084, China

Abstract

Heavy fog weather can increase traffic accidents and lead to freeway closures which result in delays. This paper aims at exploring traffic accident and emission characteristics in heavy fog, as well as freeway intermittent release measures for heavy fog weather. A driving simulator experiment is conducted for obtaining driving behaviors in heavy fog. By proposing a multi-cell cellular automaton (CA) model based on the experimental data, the role of intermittent release measures on the reduction of traffic accidents and CO emissions is studied. The results show that, affected by heavy fog, when cellular occupancy [Formula: see text], the probability of traffic accidents is much higher; and CO emissions increase significantly when [Formula: see text]. After an intermittent release measure is applied, the probability of traffic accidents and level of CO emissions become reasonable. Obviously, the measure can enhance traffic safety and reduce emissions.

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Investigating the Impact of Various Risk Factors on Victims of Traffic Accidents;Sustainability;2020-05-11

2. Using Vehicle-to-Vehicle Communication to Improve Traffic Safety in Sand-dust Environment;International Journal of Environmental Research and Public Health;2020-02-12

3. Effect of Imitation Phenomenon on Two-lane Traffic Safety in Fog Weather;International Journal of Environmental Research and Public Health;2019-10-01

4. Multiple-vehicle collision influenced by misjudgment of space headway in traffic flow under fog weather condition;IOP Conference Series: Earth and Environmental Science;2019-09-01

5. Assessing Public Satisfaction of Freeway Closure Measures in Fog and Haze Weather: A Questionnaire-Based Study in Hubei Province, China;IOP Conference Series: Earth and Environmental Science;2019-09-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3