Effect of Imitation Phenomenon on Two-lane Traffic Safety in Fog Weather

Author:

Tan ,Gong ,Qin

Abstract

A neighboring lane’s vehicles are potentially important influence factors of traffic safety. In fog weather, drivers will automatically imitate the behaviors demonstrated by other vehicles in the neighboring lane. To illustrate the effect of the imitation phenomenon on traffic safety, this paper develops an extended two-lane car-following model in fog weather. Numerical simulations are carried out to study the effect of imitation on multiple-vehicle collision induced by a sudden stop, as well as perturbation propagation when a small perturbation is added to the uniform traffic flow. The results indicate that the number of collisions depends on the influence coefficient of neighboring lane’s vehicles, sensitivity, headway and initial velocity. Furthermore, the number of crumpled vehicles decreases when the imitation phenomenon is taken into account. In addition, lower vehicular velocity in the neighboring lane can reduce the magnitude of acceleration and fluctuation of headway. The perturbation can be absorbed under certain given conditions regarding the imitation phenomenon. Therefore, traffic safety can be improved by considering the effect of the imitation phenomenon on two-lane traffic flow in fog weather. The findings in this study can provide a theoretical reference for the development of multi-lane intermittent release measures in fog weather.

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A transmission model based deep neural network for image dehazing;Multimedia Tools and Applications;2023-10-07

2. Calibration of freeway car-following models under rain-fog environments;Eighth International Conference on Electromechanical Control Technology and Transportation (ICECTT 2023);2023-09-07

3. Can haze warning policy reduce traffic accidents: evidence from China;Environmental Science and Pollution Research;2022-08-06

4. Modeling the Car-Following Behavior with Consideration of Driver, Vehicle, and Environment Factors: A Historical Review;Sustainability;2022-07-05

5. Classification of Weather Phenomenon From Images by Using Deep Convolutional Neural Network;Earth and Space Science;2021-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3