LUMINESCENCE BEHAVIOR AND MECHANISM OF LIGHT-EMITTING POROUS SILICON

Author:

WANG XUN1

Affiliation:

1. Surface Physics Laboratory and Fudan T.D. Lee Physics Laboratory, Fudan University, Shanghai, China

Abstract

In this review article, we give a new insight into the luminescence mechanism of porous silicon. First, we observed a “pinning” characteristic of photoluminescent peaks for as-etched porous silicon samples. It was explained as resulting from the discontinuous variation of the size of Si nanostructures, i.e. the size quantization. A tight-binding calculation of the energy band gap widening versus the dimension of nanoscale Si based on the closed-shell Si cluster model agrees well with the experimental observations. Second, the blue-light emission from porous silicon was achieved by using boiling water treatment. By investigating the luminescence micrographic images and the decaying behaviors of PL spectra, it has been shown that the blue-light emission is believed to be originated from the porous silicon skeleton rather than the surface contaminations. The conditions for achieving blue light need proper size of Si nanostructures, low-surface recombination velocity, and mechanically strong skeleton. The fulfillment of these conditions simultaneously is possible but rather critical. Third, the exciton dynamics in light-emitting porous silicon is studied by using the temperature-dependent and picosecond time-resolved luminescence spectroscopy. A direct evidence of the existence of confined excitons induced by the quantum size effect has been revealed. Two excitation states are found to be responsible for the visible light emission, i.e. a higher lying energy state corresponding to the confined excitons in Si nanostructures and a lower lying state related with surfaces of Si wires or dots. A picture of the carrier transfer between the quantum confined state and the surface localized state has been proposed. Finally, we investigated the transient electroluminescence behaviors of Au/porous silicon/Si/Al structure and found it is very similar to that of an ordinary p-n junction light-emitting diode. The mechanism of electroluminescence is explained as the carrier injection through the Au/porous silicon Schotky barrier and the porous silicon/p-Si heterojunction into the corrugated Si wires, where the radiative recombination of carriers occurs.

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3