NEW COLLECTOR OF PLANAR INSULATED GATE BIPOLAR TRANSISTOR FOR BROAD APPLICATIONS

Author:

ZHANG FEI12,SHI LINA12,YU WEN1,LI CHENGFANG2,SUN XIAOWEI1

Affiliation:

1. Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China

2. Department of Physics, Wuhan University, Wuhan, 430072, China

Abstract

A new concept of Insulated Gate Bipolar Transisitor (IGBT) with a Si/Ge layer collector is proposed to meet different requirements for turn-on voltage and turn-off time. The operation principles of IGBT are discussed and the energy band diagram of Si/Ge heterojunction is employed to explain the inner dynamic mechanism of the proposed IGBT. Two-dimensional (2D) device-circuit mixed-mode simulations indicate that the tail-current, which is a major cause of the power loss and limits the operation speed of the device, is suppressed effectively by using the Si/Ge layer collector. On the other hand, turn-on voltage is increased by the use of the Si/Ge collector. Furthermore, the turn-on voltage is increasing with the increase of the areal rate of the Ge region in the whole collector, while the turn-off time is reversed. This valuable information leads to the freely tunable planar IGBT by adapting the different areal rates of the Ge region to cast to different actual situations. Detailed physical explanations are also given.

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Novel Structure Trench IGBT with Full Hole-Barrier Layer;Applied Mechanics and Materials;2014-03

2. Design of insulated gate bipolar transistor with double-barrier MOS structure;International Journal of Electronics;2010-02

3. A NOVEL PT AND NPT MIXED IGBT HAVING A NEW n-BUFFER LAYER;Modern Physics Letters B;2007-01-10

4. A novel high performance insulated gate bipolar transistor;Solid-State Electronics;2006-07

5. Novel plugged p/sup +/ collector structure for high-performance IGBT;IEEE Transactions on Plasma Science;2006-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3