Affiliation:
1. School of Mechanical and Automotive Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
2. Business School, University of Shanghai for Science and Technology, Shanghai 200093, China
Abstract
The vehicle exhaust has been one of the major sources of greenhouse gas emissions. With an increase in traffic volume, it has been found that the introduced intelligent traffic control is necessary. This paper investigated a novel VSL strategy considering the dynamic control cycle to improve the traffic efficiency and environmental benefit on freeway. An extension of the cell transmission model (CTM) was used to depict the traffic characteristics under VSL control, and integrated with the microscopic emission and fuel consumption model VT-Micro to estimate the pollution emission of each cell. The VSL strategy was designed to provide multiple control cycles with different length to adjust the scope of VSL changes, furthermore, a probability formula was developed and used to determine the optimal quantity of control cycles to reduce the computational complexity of controller. An objective optimization function was formulated with the aim of minimizing total travel time and CO emission. With simulation experiments, the results showed that the proposed VSL strategy considering the dynamic control cycle outperformed uncontrolled scenario, resulting in up to 8.4% of total travel time reductions, 26.7% of delay optimization, and 14.5% reduction in CO emission, which enhanced the service level of freeway network.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Shanghai
Technical Service Platform for Vibration and Noise Testing and Control of New Energy Vehicles
Publisher
World Scientific Pub Co Pte Lt
Subject
Condensed Matter Physics,Statistical and Nonlinear Physics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献