Affiliation:
1. State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China
Abstract
NiCr / NiSi thin film thermocouples (TFTCs) with a multi-layer structure were fabricated on Ni -based superalloy substrates (95 mm × 35 mm × 2 mm) by magnetron sputtering and electron beam evaporation. The five-layer structure is composed of NiCrAlY buffer layer (2 μm), thermally grown Al 2 O 3 bond layer (200 nm), Al 2 O 3 insulating layer (10 μm), NiCr / NiSi TFTCs (1 μm), and Al 2 O 3 protective layer (500 nm). Influences of thermocouple layer thickness on thermoelectric properties were investigated. Seebeck coefficient of the samples with the increase in thermocouple layer thickness from 0.5 μm to 1 μm increased from 27.8 μV/°C to 33.8 μV/°C, but exhibited almost no change with further increase in thermocouple layer thickness from 1 μm to 2 μm. Dependence on temperature of the thermal electromotive force of the samples almost followed standard thermocouple characteristic curves when the thickness of the thermocouple layer was 1 μm and 2 μm. Sensitive coefficient K of the samples increased greatly with the increase in thickness of the thermocouple layer from 0.5 μm to 1 μm, but decreased insignificantly with the increase in thermocouple layer thickness from 1 μm to 2 μm, and continuously decreased with the increase in temperature. The sensitive coefficient and the stability of NiCr / NiSi TFTCs were both improved after annealing at 600°C.
Publisher
World Scientific Pub Co Pte Lt
Subject
Condensed Matter Physics,Statistical and Nonlinear Physics
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献