A WHITE DWARF-NEUTRON STAR RELATIVISTIC BINARY MODEL FOR SOFT GAMMA-RAY REPEATERS

Author:

MOSQUERA CUESTA HERMAN J.12

Affiliation:

1. Instituto de Cosmologia, Relatividade e Astrofísica (ICRA-Br), Centro Brasileiro de Pesquisas Físicas, Rua Dr. Xavier Sigaud 150, Cep 22290-180, Urca, Rio de Janeiro, RJ, Brazil

2. Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, Miramare 34014, Trieste, Italy

Abstract

A scenario for soft gamma-ray repeaters (SGRs) is introduced in which gravitational radiation reaction (GRR) effects drive the dynamics of an ultrashort orbital period X-ray binary embracing a high-mass donor white dwarf (WD) to a rapidly rotating low magnetized massive neutron star (NS) surrounded by a thick, dense and massive accretion torus. Driven by GRR, over timescales of ΔTrep~ 10 years, the binary separation reduces, the WD overflows its Roche lobe and the mass transfer drives unstable the accretion disk around the NS. As the binary circular orbital period is a multiple integer number (m) of the period of the WD fundamental mode,37the WD is since long pulsating at its fundamental mode; and most of its harmonics, due to the tidal interaction with its NS orbital companion. Hence, when the powerful irradiation glows onto the WD; from the fireball ejected as part of the disk matter slumps onto the NS, it is partially absorbed. This huge energy excites other WD radial (p-mode) pulsations.34,35After each mass-transfer episode the binary separation (and orbital period) is augmented significantly1,5due to the binary's angular momentum redistribution. Thus a new adiabatic inspiral phase driven by GRR reaction starts which brings the binary close again, and the process repeats after a time span ΔTrep. This model allows to explain most of SGRs observational features: their recurrent activity, energetics of giant superoutbursts and quiescent stages, and particularly the intriguing subpulses discovered by BeppoSAX,10which are suggested here to be overtones of the WD radial fundamental mode (see the accompanying paper).31

Publisher

World Scientific Pub Co Pte Lt

Subject

Space and Planetary Science,Astronomy and Astrophysics,Mathematical Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3