FINANCIAL CONTAGION IN A STOCHASTIC BLOCK MODEL

Author:

DETERING NILS1ORCID,MEYER-BRANDIS THILO2,PANAGIOTOU KONSTANTINOS2,RITTER DANIEL2

Affiliation:

1. Department of Statistics and Applied Probability, University of California, Santa Barbara, CA 93106, USA

2. Department of Mathematics, University of Munich, Theresienstraße 39, 80333 Munich, Germany

Abstract

One of the most characteristic features of the global financial network is its inherently complex and intertwined structure. From the perspective of systemic risk it is important to understand the influence of this network structure on default contagion. Using sparse random graphs to model the financial network, asymptotic methods turned out to be powerful for the purpose of analytically describing the contagion process and making statements about resilience. So far, however, such methods have been limited to so-called rank-one models in which, informally speaking, the only parameter for the skeleton of the network is the degree sequence and the contagion process can be described by a one-dimensional fixed-point equation. Such networks fail to account for the possibility of a pronounced block structure such as core/periphery or a network composed of different connected blocks for different countries. We present a much more general model here, where we distinguish vertices (institutions) of different types and let edge probabilities and exposures depend on the types of both, the receiving and the sending vertex, plus additional parameters. Our main result allows one to compute explicitly the systemic damage caused by some initial local shock event, and we derive a complete characterization of resilient and nonresilient financial systems. This is the first instance that default contagion is rigorously studied in a model outside the class of rank-one models and several technical challenges arise. In contrast to previous work, in which networks could be classified as resilient or nonresilient independently of the distribution of the shock, information about the shock becomes important in our model and a more refined resilience condition arises. Among other applications of our theory we derive resilience conditions for the global network based on subnetwork conditions only.

Publisher

World Scientific Pub Co Pte Lt

Subject

General Economics, Econometrics and Finance,Finance

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Robust Financial Networks;Operations Research;2024-06-07

2. Clustering heterogeneous financial networks;Mathematical Finance;2023-06-20

3. Suffocating Fire Sales;SIAM Journal on Financial Mathematics;2022-01-27

4. On some extended mixed integer optimization models of the Eisenberg–Noe model in systemic risk management;International Transactions in Operational Research;2021-02-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3