Clustering heterogeneous financial networks

Author:

Amini Hamed1ORCID,Chen Yudong2ORCID,Minca Andreea3ORCID,Qian Xin4

Affiliation:

1. Department of Industrial and Systems Engineering University of Florida Gainesville Florida USA

2. Department of Computer Sciences University of Wisconsin‐Madison Madison WI

3. School of Operations Research and Information Engineering Cornell University Ithaca New York USA

4. Industrial Engineering and Manlagement Sciences Northwestern University Evanston Illinois USA

Abstract

AbstractWe develop a convex‐optimization clustering algorithm for heterogeneous financial networks, in the presence of arbitrary or even adversarial outliers. In the stochastic block model with heterogeneity parameters, we penalize nodes whose degree exhibit unusual behavior beyond inlier heterogeneity. We prove that under mild conditions, this method achieves exact recovery of the underlying clusters. In absence of any assumption on outliers, they are shown not to hinder the clustering of the inliers. We test the performance of the algorithm on semi‐synthetic heterogenous networks reconstructed to match aggregate data on the Korean financial sector. Our method allows for recovery of sub‐sectors with significantly lower error rates compared to existing algorithms. For overlapping portfolio networks, we uncover a clustering structure supporting diversification effects in investment management.

Funder

National Science Foundation

Publisher

Wiley

Subject

Applied Mathematics,Economics and Econometrics,Social Sciences (miscellaneous),Finance,Accounting

Reference69 articles.

1. Financial Stability Report. (December2016).Technical report The Bank of Korea.

2. Optimal intervention under stress scenarios: A case of the Korean financial system

3. Mixed membership stochastic blockmodels;Airoldi E.;Journal of Machine Learning Research,2008

4. Nuclear norm minimization for the planted clique and biclique problems

5. RESILIENCE TO CONTAGION IN FINANCIAL NETWORKS

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3