Content-Based Video Retrieval Using Integration of Curvelet Transform and Simple Linear Iterative Clustering

Author:

Bommisetty Reddy Mounika1,Khare Ashish2,Khare Manish3,Palanisamy P.1

Affiliation:

1. Department of Electronics and Communication Engineering, National Institute of Technology Tiruchirappalli, Tiruchirappalli, Tamil Nadu 620015, India

2. Department of Electronics and Communication, University of Allahabad, Prayagraj 211002, India

3. Dhirubhai Ambani Institute of Information and Communication Technology (DA-IICT), Gandhinagar, India

Abstract

Video is a rich information source containing both audio and visual information along with motion information embedded in it. Applications such as e-learning, live TV, video on demand, traffic monitoring, etc. need an efficient video retrieval strategy. Content-based video retrieval and superpixel segmentation are two diverse application areas of computer vision. In this work, we are presenting an algorithm for content-based video retrieval with help of Integration of Curvelet transform and Simple Linear Iterative Clustering (ICTSLIC) algorithm. Proposed algorithm consists of two steps: off line processing and online processing. In offline processing, keyframes of the database videos are extracted by employing features: Pearson Correlation Coefficient (PCC) and color moments (CM) and on the extracted keyframes superpixel generation algorithm ICTSLIC is applied. The superpixels generated by applying ICTSLIC on keyframes are used to represent database videos. On other side, in online processing, ICTSLIC superpixel segmentation is applied on query frame and the superpixels generated by segmentation are used to represent query frame. Then videos similar to query frame are retrieved through matching done by calculation of Euclidean distance between superpixels of query frame and database keyframes. Results of the proposed method are irrespective of query frame features such as camera motion, object’s pose, orientation and motion due to the incorporation of ICTSLIC superpixels as base feature for matching and retrieval purpose. The proposed method is tested on the dataset comprising of different categories of video clips such as animations, serials, personal interviews, news, movies and songs which is publicly available. For evaluation, the proposed method randomly picks frames from database videos, instead of selecting keyframes as query frames. Experiments were conducted on the developed dataset and the performance is assessed with different parameters Precision, Recall, Jaccard Index, Accuracy and Specificity. The experimental results shown that the proposed method is performing better than the other state-of-art methods.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Computer Vision and Pattern Recognition

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dual Contrast-Driven Deep Multi-View Clustering;IEEE Transactions on Image Processing;2024

2. Content-based Video Retrieval Systems: A Review;2023 3rd International Conference on Innovative Mechanisms for Industry Applications (ICIMIA);2023-12-21

3. Construction of law and economics litigation service platform based on multimedia retrieval;Applied Mathematics and Nonlinear Sciences;2023-07-01

4. α and β-Testing of an Epileptic Seizure Detection Algorithm on Pre-ictal, Ictal, and Inter-ictal Part of EEG Signal;Computational Intelligence in Pattern Recognition;2023

5. Tunnel Security Management Based on Association Rule Mining under Hadoop Platform;Mathematical Problems in Engineering;2022-08-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3