Tunnel Security Management Based on Association Rule Mining under Hadoop Platform

Author:

Wang Qun1,Xue Ting2ORCID

Affiliation:

1. Xi’an Siyuan University, Shaanxi, Xi’an 710038, China

2. Xi’an Eurasia University, Shaanxi, Xi’an 710065, China

Abstract

The problem of how to use large amounts of historical data for tunnel safety management has a greater practical application value. The association rule method in data mining technology can provide effective decision support for tunnel safety prevention by mining historical data. To address the problem of large data volume and sparse data items in tunnel safety management, an association rule method—Apriori algorithm—based on the Hadoop platform is proposed to improve the efficiency and accuracy of data mining in cloud environment. First, the parallel MapReduce implementation steps are analyzed on the basis of the distributed Hadoop framework. Then, the existing single-user data validation algorithm is improved by applying a multiuser parallel validation algorithm to Apriori in order to reduce the number of validations. Next, the traditional association rule Apriori algorithm is MapReduce optimized to generate a smaller set of useless candidate items. At the same time, Boolean ranking is used to optimize the way transactional data are stored in the database, reducing the number of redundant subsets and the number of times the database is connected, and shortening the task processing time. The experimental results show that the proposed method is able to mine the relationships between tunnel safety hazards and provide effective decision support for tunnel safety prevention. At the same time, the proposed method more efficiently operates than other association rule methods.

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An overview of Hadoop applications in transportation big data;Journal of Traffic and Transportation Engineering (English Edition);2023-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3