Two-Phase Speckle Noise Removal in US Images: Speckle Reducing Improved Anisotropic Diffusion and Optimal Bayes Threshold

Author:

Shabana Sulthana S. L.1,Sucharitha M.2ORCID

Affiliation:

1. Department of Electronics and Communication Engineering, Noorul Islam University, Thuckalay, Kumaracoil 629180, Tamil Nadu, India

2. School of Electronics Engineering (SENSE), VIT-AP University, Amaravati, Andhra Pradesh, India

Abstract

Medial images are contaminated by multiplicative speckle noise, which dramatically reduces ultrasound images and has a detrimental impact on a variety of image interpretation tasks. Hence, to overcome this issue, this paper presented a Two-Phase Speckle Reduction approach with Improved Anisotropic Diffusion and Optimal Bayes Threshold termed TPSR-IADOT, which includes the phases like image enhancement and two-level decomposition processes. Initially, the speckle noise is subjected to an image enhancement process where the Speckle Reducing Improved Anisotropic Diffusion (SRAID) filtering process is carried out for the speckle removal process. Afterwards, two-level decomposition takes place which utilizes Discrete Wavelet Transform (DWT) to remove the residual noise. As the speckle noise is mostly present in the high-frequency band, Improved Bayes Threshold will be applied to the high- frequency subbands. Finally, to provide the best outcomes, an optimization algorithm termed Self Improved Pelican Optimization Algorithm (SI-POA) in this work via choosing the optimal threshold value. The efficiency of the proposed method has been validated on an ultrasound image database using Simulink in terms of PSNR, SSIM, SDME and MAPE. Accordingly, from the analysis, it is proved that the proposed TPSR-IADOT attains the PSNR of 40.074, whereas the POA is 38.572, COOT is 38.572, BES is 37.003, PRO is 30.419, WOA is 33.218, RFU-LA is 29.935 and SSI-COA is 39.256, for noise variance[Formula: see text]0.1.

Publisher

World Scientific Pub Co Pte Ltd

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3