A Wavelet Shrinkage Mixed with a Single-level 2D Discrete Wavelet Transform for Image Denoising

Author:

Birdawod Hawkar QsimORCID,Khudhur Azhin MohammedORCID,Kadir Dler HusseinORCID,Saleh Dlshad MahmoodORCID

Abstract

The single-level 2D discrete wavelet transform method is a powerful technique for effectively removing Gaussian noise from natural images. Its effectiveness is attributed to its ability to capture a signal's energy at low energy conversion values, allowing for efficient noise reduction while preserving essential image details. The wavelet noise reduction method mitigates the noise present in the waveform coefficients produced by the discrete wavelet transform. In this study, three different wavelet families—Daubechies (db7), Coiflets (coif5), and Fejér-Korovkin (fk4)—were evaluated for their noise removal capabilities using the Bayes shrink method. This approach was applied to a set of images, and the performance was analyzed using the Mean Squared Error (MSE) and Peak Signal-to-Noise Ratio (PSNR) metrics. Our results demonstrated that among the wavelet families tested, the Fejér-Korovkin (fk4) wavelet consistently outperformed the others. The fk4 wavelet family yielded the lowest MSE values, indicating minimal reconstruction error, and the highest PSNR values, reflecting superior noise suppression and better image quality across all tested images. These findings suggest that the fk4 wavelet family, when combined with the Bayes shrink method, provides a robust framework for Gaussian noise reduction in natural images. The comparative analysis highlights the importance of selecting appropriate wavelet families to optimize noise reduction performance, paving the way for further research and potential improvements in image denoising techniques.

Publisher

Sulaimani Polytechnic University

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3