Evaluation of Spiking Neural Nets-Based Image Classification Using the Runtime Simulator RAVSim

Author:

Sanaullah 1,Koravuna Shamini2,Rückert Ulrich2,Jungeblut Thorsten1

Affiliation:

1. Department of Engineering and Mathematics, Bielefeld University of Applied Science, Bielefeld, Germany

2. Department of Cognitive Interaction Technology Center, Bielefeld University, Bielefeld, Germany

Abstract

Spiking Neural Networks (SNNs) help achieve brain-like efficiency and functionality by building neurons and synapses that mimic the human brain’s transmission of electrical signals. However, optimal SNN implementation requires a precise balance of parametric values. To design such ubiquitous neural networks, a graphical tool for visualizing, analyzing, and explaining the internal behavior of spikes is crucial. Although some popular SNN simulators are available, these tools do not allow users to interact with the neural network during simulation. To this end, we have introduced the first runtime interactive simulator, called Runtime Analyzing and Visualization Simulator (RAVSim),adeveloped to analyze and dynamically visualize the behavior of SNNs, allowing end-users to interact, observe output concentration reactions, and make changes directly during the simulation. In this paper, we present RAVSim with the current implementation of runtime interaction using the LIF neural model with different connectivity schemes, an image classification model using SNNs, and a dataset creation feature. Our main objective is to primarily investigate binary classification using SNNs with RGB images. We created a feed-forward network using the LIF neural model for an image classification algorithm and evaluated it by using RAVSim. The algorithm classifies faces with and without masks, achieving an accuracy of 91.8% using 1000 neurons in a hidden layer, 0.0758 MSE, and an execution time of ∼10[Formula: see text]min on the CPU. The experimental results show that using RAVSim not only increases network design speed but also accelerates user learning capability.

Funder

Ministry of Culture and Science of the State of North Rhine-Westphalia

Publisher

World Scientific Pub Co Pte Ltd

Subject

Computer Networks and Communications,General Medicine

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3