RESPONSIVE NEUROMODULATORS BASED ON ARTIFICIAL NEURAL NETWORKS USED TO CONTROL SEIZURE-LIKE EVENTS IN A COMPUTATIONAL MODEL OF EPILEPSY

Author:

COLIC SINISA1,ZALAY OSBERT C.2,BARDAKJIAN BERJ L.12

Affiliation:

1. Edwards S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, M5S 3G4, Canada

2. Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3G9, Canada

Abstract

Deep brain stimulation (DBS) has been noted for its potential to suppress epileptic seizures. To date, DBS has achieved mixed results as a therapeutic approach to seizure control. Using a computational model, we demonstrate that high-complexity, biologically-inspired responsive neuromodulation is superior to periodic forms of neuromodulation (responsive and non-responsive) such as those implemented in DBS, as well as neuromodulation using random and random repetitive-interval stimulation. We configured radial basis function (RBF) networks to generate outputs modeling interictal time series recorded from rodent hippocampal slices that were perfused with low Mg2+/high K+solution. We then compared the performance of RBF-based interictal modulation, periodic biphasic-pulse modulation, random modulation and random repetitive modulation on a cognitive rhythm generator (CRG) model of spontaneous seizure-like events (SLEs), testing efficacy of SLE control. A statistically significant improvement in SLE mitigation for the RBF interictal modulation case versus the periodic and random cases was observed, suggesting that the use of biologically-inspired neuromodulators may achieve better results for the purpose of electrical control of seizures in a clinical setting.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Networks and Communications,General Medicine

Reference43 articles.

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3