Coupled Oscillators Model of Hyperexcitable Neuroglial Networks

Author:

Farah Firas H.1,Grigorovsky Vasily2,Bardakjian Berj L.3

Affiliation:

1. Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario M5S3G4, Canada

2. Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S3G9, Canada

3. Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Room 407, Toronto, Ontario M5S3G9, Canada

Abstract

Glial populations within neuronal networks of the brain have recently gained much interest in the context of hyperexcitability and epilepsy. In this paper, we present an oscillator-based neuroglial model capable of generating Spontaneous Electrical Discharges (SEDs) in hyperexcitable conditions. The network is composed of 16 coupled Cognitive Rhythm Generators (CRGs), which are oscillator-based mathematical constructs previously described by our research team. CRGs are well-suited for modeling assemblies of excitable cells, and in this network, each represents one of the following populations: excitatory pyramidal cells, inhibitory interneurons, astrocytes, and microglia. We investigated various pathways leading to hyperexcitability, and our results suggest an important role for astrocytes and microglia in the generation of SEDs of various durations. Analysis of the resultant SEDs revealed two underlying duration distributions with differing properties. Particularly, short and long SEDs are associated with deterministic and random underlying processes, respectively. The mesoscale of this model makes it well-suited for (a) the elucidation of glia-related hypotheses in hyperexcitable conditions, (b) use as a testing platform for neuromodulation purposes, and (c) a hardware implementation for closed-loop neuromodulation.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Networks and Communications,General Medicine

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3