A Three-Dimensional Microelectrode Array to Generate Virtual Electrodes for Epiretinal Prosthesis Based on a Modeling Study

Author:

Lyu Qing1,Lu Zhuofan1,Li Heng1,Qiu Shirong1,Guo Jiahui1,Sui Xiaohong1,Sun Pengcheng1,Li Liming1,Chai Xinyu1,Lovell Nigel H.2

Affiliation:

1. School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China

2. Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia

Abstract

Despite many advances in the development of retinal prostheses, clinical reports show that current retinal prosthesis subjects can only perceive prosthetic vision with poor visual acuity. A possible approach for improving visual acuity is to produce virtual electrodes (VEs) through electric field modulation. Generating controllable and localized VEs is a crucial factor in effectively improving the perceptive resolution of the retinal prostheses. In this paper, we aimed to design a microelectrode array (MEA) that can produce converged and controllable VEs by current steering stimulation strategies. Through computational modeling, we designed a three-dimensional concentric ring–disc MEA and evaluated its performance with different stimulation strategies. Our simulation results showed that electrode–retina distance (ERD) and inter-electrode distance (IED) can dramatically affect the distribution of electric field. Also the converged VEs could be produced when the parameters of the three-dimensional MEA were appropriately set. VE sites can be controlled by manipulating the proportion of current on each adjacent electrode in a current steering group (CSG). In addition, spatial localization of electrical stimulation can be greatly improved under quasi-monopolar (QMP) stimulation. This study may provide support for future application of VEs in epiretinal prosthesis for potentially increasing the visual acuity of prosthetic vision.

Funder

National Natural Science of China

China Postdoctoral Science Foundation

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Networks and Communications,General Medicine

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3