Deep Support Vector Machines for the Identification of Stress Condition from Electrodermal Activity

Author:

Sánchez-Reolid Roberto12,Martínez-Rodrigo Arturo34,López María T.12,Fernández-Caballero Antonio125

Affiliation:

1. Departamento de Sistemas Informáticos, Universidad de Castilla-La Mancha, 02071 Albacete Spain

2. Instituto de Investigación en Informática de Albacete, 02071 Albacete, Spain

3. Departamento de Sistemas Informáticos, Universidad de Castilla-La Mancha, 16071 Cuenca, Spain

4. Instituto de Tecnologías Audiovisuales, 16071 Cuenca, Spain

5. CIBERSAM (Biomedical Research Networking Centre in Mental Health), Spain

Abstract

Early detection of stress condition is beneficial to prevent long-term mental illness like depression and anxiety. This paper introduces an accurate identification of stress/calm condition from electrodermal activity (EDA) signals. The acquisition of EDA signals from a commercial wearable as well as their storage and processing are presented. Several time-domain, frequency-domain and morphological features are extracted over the skin conductance response of the EDA signals. Afterwards, a classification is undergone by using several classical support vector machines (SVMs) and deep support vector machines (D-SVMs). In addition, several binary classifiers are also compared with SVMs in the stress/calm identification task. Moreover, a series of video clips evoking calm and stress conditions have been viewed by 147 volunteers in order to validate the classification results. The highest F1-score obtained for SVMs and D-SVMs are 83% and 92%, respectively. These results demonstrate that not only classical SVMs are appropriate for classification of biomarker signals, but D-SVMs are very competitive in comparison to other classification techniques. In addition, the results have enabled drawing useful considerations for the future use of SVMs and D-SVMs in the specific case of stress/calm identification.

Funder

FEDER, UE

Castilla-La Mancha Regional Government SBPLY

Spanish Ministerio de Educacion y Formacion Profesional

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Networks and Communications,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3