Multiscale Entropy Analysis for Recognition of Visually Elicited Negative Stress From EEG Recordings

Author:

Martínez-Rodrigo Arturo1,García-Martínez Beatriz2,Alcaraz Raúl3,González Pascual45,Fernández-Caballero Antonio25

Affiliation:

1. Departamento de Sistemas Informáticos, Escuela Politécnica de Cuenca, Universidad de Castilla-La Mancha, 16071-Cuenca, Spain

2. Departamento de Sistemas Informáticos, Escuela de Ingenieros Industriales de Albacete, Universidad de Castilla-La Mancha, 02071-Albacete, Spain

3. Research Group in Electronic, Biomedical and Telecommunication Engineering, Escuela Politécnica de Cuenca, Universidad de Castilla-La Mancha, 16071-Cuenca, Spain

4. Departamento de Sistemas Informáticos, Escuela Superior de Ingeniería Informática, Universidad de Castilla-La Mancha, 02071-Albacete, Spain

5. CIBERSAM (Biomedical Research Networking Centre in Mental Health), Spain

Abstract

Automatic identification of negative stress is an unresolved challenge that has received great attention in the last few years. Many studies have analyzed electroencephalographic (EEG) recordings to gain new insights about how the brain reacts to both short- and long-term stressful stimuli. Although most of them have only considered linear methods, the heterogeneity and complexity of the brain has recently motivated an increasing use of nonlinear metrics. Nonetheless, brain dynamics reflected in EEG recordings often exhibit a multiscale nature and no study dealing with this aspect has been developed yet. Hence, in this work two nonlinear indices for quantifying regularity and predictability of time series from several time scales are studied for the first time to discern between visually elicited emotional states of calmness and negative stress. The obtained results have revealed the maximum discriminant ability of 86.35% for the second time scale, thus suggesting that brain dynamics triggered by negative stress can be more clearly assessed after removal of some fast temporal oscillations. Moreover, both metrics have also been able to report complementary information for some brain areas.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Networks and Communications,General Medicine

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3