Supported Diagnosis of Attention Deficit and Hyperactivity Disorder from EEG Based on Interpretable Kernels for Hidden Markov Models

Author:

Maya-Piedrahita M. C.1,Herrera-Gomez P. M.2,Berrío-Mesa L.1,Cárdenas-Peña D. A.1,Orozco-Gutierrez A. A.1

Affiliation:

1. Automatics Research Group, Universidad Tecnológica de Pereira, Pereira, Risaralda, Colombia

2. Research Group Psiquiatría Neurociencias y Comunidad, Universidad Tecnológica de Pereira, Pereira, Risaralda, Colombia

Abstract

As a neurodevelopmental pathology, Attention Deficit Hyperactivity Disorder (ADHD) mainly arises during childhood. Persistent patterns of generalized inattention, impulsivity, or hyperactivity characterize ADHD that may persist into adulthood. The conventional diagnosis relies on clinical observational processes yielding high rates of overdiagnosis due to varying interpretations among specialists or missing information. Although several studies have designed objective behavioral features to overcome such an issue, they lack significance. Despite electroencephalography (EEG) analyses extracting alternative biomarkers using signal processing techniques, the nonlinearity and nonstationarity of EEG signals restrain performance and generalization of hand-crafted features. This work proposes a methodology to support ADHD diagnosis by characterizing EEG signals from hidden Markov models (HMM), classifying subjects based on similarity measures for probability functions, and spatially interpreting the results using graphic embeddings of stochastic dynamic models. The methodology learns a single HMM for EEG signal from each patient, so favoring the inter-subject variability. Then, the Probability Product Kernel, specifically developed for assessing the similarity between HMMs, fed a support vector machine that classifies subjects according to their stochastic dynamics. Lastly, the kernel variant of Principal Component Analysis provided a means to visualize the EEG transitions in a two-dimensional space, evidencing dynamic differences between ADHD and Healthy Control children. From the electrophysiological perspective, we recorded EEG under the Stop Signal Task modified with reward levels, which considers cognitive features of interest as insufficient motivational circuits recruitment. The methodology compares the supported diagnosis in two EEG channel setups (whole channel set and channels of interest in frontocentral area) and four frequency bands (Theta, Alpha, Beta rhythms, and a wideband). Results evidence an accuracy rate of 97.0% in the Beta band and in the channels where previous works found error-related negativity events. Such accuracy rate strongly supports the dual pathway hypothesis and motivational deficit concerning the pathophysiology of ADHD. It also demonstrates the utility of joining inhibitory and motivational paradigms with dynamic EEG analysis into a noninvasive and affordable diagnostic tool for ADHD patients.

Funder

the MINCIENCIAS

Publisher

World Scientific Pub Co Pte Ltd

Subject

Computer Networks and Communications,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3