Intrinsic Plasticity for Natural Competition in Koniocortex-Like Neural Networks

Author:

Peláez Francisco Javier Ropero1,Aguiar-Furucho Mariana Antonia2,Andina Diego3

Affiliation:

1. Center of Mathematics, Computation and Cognition, Federal University of ABC, Santo André SP 09210-580 Brazil

2. Neurosciences and Behavior Research Nucleus, University of Sao Paulo, SP 05508-030, Brazil

3. Group for Automation in Signal and Communications, Technical University of Madrid, ETSI Telecomunicación, 28040 Madrid, Spain

Abstract

In this paper, we use the neural property known as intrinsic plasticity to develop neural network models that resemble the koniocortex, the fourth layer of sensory cortices. These models evolved from a very basic two-layered neural network to a complex associative koniocortex network. In the initial network, intrinsic and synaptic plasticity govern the shifting of the activation function, and the modification of synaptic weights, respectively. In this first version, competition is forced, so that the most activated neuron is arbitrarily set to one and the others to zero, while in the second, competition occurs naturally due to inhibition between second layer neurons. In the third version of the network, whose architecture is similar to the koniocortex, competition also occurs naturally owing to the interplay between inhibitory interneurons and synaptic and intrinsic plasticity. A more complex associative neural network was developed based on this basic koniocortex-like neural network, capable of dealing with incomplete patterns and ideally suited to operating similarly to a learning vector quantization network. We also discuss the biological plausibility of the networks and their role in a more complex thalamocortical model.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Networks and Communications,General Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3