Synchronization Analysis In Epileptic EEG Signals Via State Transfer Networks Based On Visibility Graph Technique

Author:

Olamat Ali1,Ozel Pinar2,Akan Aydin3

Affiliation:

1. Biomedical Engineering Department, Istanbul University, Istanbul, Turkey

2. Biomedical Engineering Department, Nevsehir, Hacı Bektas Veli University, Nevsehir, Turkey

3. Electrical and Electronics Engineering Department, Izmir University of Economics, Izmir, Turkey

Abstract

Epilepsy is a persistent and recurring neurological condition in a community of brain neurons that results from sudden and abnormal electrical discharges. This paper introduces a new form of assessment and interpretation of the changes in electroencephalography (EEG) recordings from different brain regions in epilepsy disorders based on graph analysis and statistical rescale range analysis. In this study, two different states of epilepsy EEG data (preictal and ictal phases), obtained from 17 subjects (18 channels each), were analyzed by a new method called state transfer network (STN). The analysis performed by STN yields a network metric called motifs, which are averaged over all channels and subjects in terms of their persistence level in the network. The results showed an increase of overall motif persistence during the ictal over the preictal phase, reflecting the synchronization increase during the seizure phase (ictal). An evaluation of intermotif cross-correlation indicated a definite manifestation of such synchronization. Moreover, these findings are compared with several other well-known methods such as synchronization likelihood (SL), visibility graph similarity (VGS), and global field synchronization (GFS). It is hinted that the STN method is in good agreement with approaches in the literature and more efficient. The most significant contribution of this research is introducing a novel nonlinear analysis technique of generalized synchronization. The STN method can be used for classifying epileptic seizures based on the synchronization changes between multichannel data.

Funder

Izmir Katip Celebi University Scientific Research

Publisher

World Scientific Pub Co Pte Ltd

Subject

Computer Networks and Communications,General Medicine

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Finding synchronization state of higher-order motif networks by dynamic learning;Physical Review Research;2024-07-15

2. SimVGNets: Similarity-Based Visibility Graph Networks for Carbon Price Forecasting;Expert Systems with Applications;2023-11

3. Visibility graph analysis for brain: scoping review;Frontiers in Neuroscience;2023-09-29

4. Brain‐regulated learning for classifying on‐site hazards with small datasets;Computer-Aided Civil and Infrastructure Engineering;2023-08

5. Epileptic EEG Classification via Graph Transformer Network;International Journal of Neural Systems;2023-06-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3