Brain‐regulated learning for classifying on‐site hazards with small datasets

Author:

Zhou Xiaoshan1,Liao Pin‐Chao1

Affiliation:

1. Department of Construction Management Tsinghua University Beijing PR China

Abstract

AbstractMachine vision technologies have the potential to revolutionize hazard inspection, but training machine learning models requires large labeled datasets and is susceptible to biases. The lack of robust perception capabilities in machine vision systems for construction hazard inspection poses significant safety concerns. To address this, we propose a novel method that leverages human knowledge extracted from electroencephalogram (EEG) recordings to enhance machine vision through transfer learning. By pretraining convolutional neural networks with EEG data recorded during construction hazard evaluations, we investigated three common on‐site hazard classifications using small datasets. Our results demonstrated that the proposed method resulted in improved accuracy (with an 11% increase) and enhanced rationality of machine learning predictions (as revealed by network visualization analysis). This research opens avenues for further exploration and industry applications, aiming to achieve more intelligent and human‐like artificial visual perception, ultimately enhancing safety and efficiency in automated hazard inspection.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Computational Theory and Mathematics,Computer Graphics and Computer-Aided Design,Computer Science Applications,Civil and Structural Engineering,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3