Corticomuscular and Intermuscular Coupling in Simple Hand Movements to Enable a Hybrid Brain–Computer Interface

Author:

Colamarino Emma12,de Seta Valeria12,Masciullo Marcella2,Cincotti Febo12,Mattia Donatella2,Pichiorri Floriana2,Toppi Jlenia12

Affiliation:

1. Department of Computer, Control and Management Engineering, Sapienza University of Rome, Via Ariosto 25, Rome 00185, Italy

2. Fondazione Santa Lucia IRCCS, Via Ardeatina 306-354, Rome 00179, Italy

Abstract

Hybrid Brain–Computer Interfaces (BCIs) for upper limb rehabilitation after stroke should enable the reinforcement of “more normal” brain and muscular activity. Here, we propose the combination of corticomuscular coherence (CMC) and intermuscular coherence (IMC) as control features for a novel hybrid BCI for rehabilitation purposes. Multiple electroencephalographic (EEG) signals and surface electromyography (EMG) from 5 muscles per side were collected in 20 healthy participants performing finger extension (Ext) and grasping (Grasp) with both dominant and non-dominant hand. Grand average of CMC and IMC patterns showed a bilateral sensorimotor area as well as multiple muscles involvement. CMC and IMC values were used as features to classify each task versus rest and Ext versus Grasp. We demonstrated that a combination of CMC and IMC features allows for classification of both movements versus rest with better performance (Area Under the receiver operating characteristic Curve, AUC) for the Ext movement (0.97) with respect to Grasp (0.88). Classification of Ext versus Grasp also showed high performances (0.99). All in all, these preliminary findings indicate that the combination of CMC and IMC could provide for a comprehensive framework for simple hand movements to eventually be employed in a hybrid BCI system for post-stroke rehabilitation.

Funder

Ricerca Corrente IRCCS Fondazione Santa Lucia

Sapienza University of Rome — Progetti di Ateneo 2020

Promobilia Foundation

Publisher

World Scientific Pub Co Pte Ltd

Subject

Computer Networks and Communications,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3