Intrinsic Synchronization Analysis of Brain Activity in Obsessive–compulsive Disorders

Author:

Ozel Pinar1,Karaca Ali2,Olamat Ali3,Akan Aydin4,Ozcoban Mehmet Akif5,Tan Oguz6

Affiliation:

1. Department of Biomedical Engineering, Nevsehir Haci Bektas Veli University, Nevsehir, Turkey

2. Department of Electrical and Electronics Engineering, Inonu University, Malatya, Turkey

3. Department of Biomedical Engineering, Istanbul University-Cerrahpasa, Istanbul, Turkey

4. Department of Electrical and Electronics Engineering, Izmir University of Economics, Izmir

5. Department of Electronic and Automation in Junior Technical College, Gaziantep University, Gaziantep, Turkey

6. Neuropsychiatry Health, Practice and Research Centre, Uskudar University, Istanbul, Turkey

Abstract

Obsessive–compulsive disorder (OCD) is one of the neuropsychiatric disorders qualified by intrusive and iterative annoying thoughts and mental attitudes that are activated by these thoughts. In recent studies, advanced signal processing techniques have been favored to diagnose OCD. This research suggests four different measurements; intrinsic phase-locked value, intrinsic coherence, intrinsic synchronization likelihood, and intrinsic visibility graph similarity that quantifies the synchronization level and complexity in electroencephalography (EEG) signals. This intrinsic synchronization is achieved by utilizing Multivariate Empirical Mode Decomposition (MEMD), a data-driven method that resolves nonlinear and nonstationary data into their intrinsic mode functions. Our intrinsic technique in this study demonstrates that MEMD-based synchronization analysis gives us much more detailed knowledge rather than utilizing the synchronization method alone. Furthermore, the nonlinear synchronization method presents more consistent results considering OCD heterogeneity. Statistical evaluation using sample [Formula: see text]-test and [Formula: see text]-test has shown the significance of such new methodology.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Networks and Communications,General Medicine

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3