Multivariate empirical mode decomposition

Author:

Rehman N.1,Mandic D. P.1

Affiliation:

1. Department of Electrical and Electronic Engineering, Imperial College London, London SW7 2AZ, UK

Abstract

Despite empirical mode decomposition (EMD) becoming a de facto standard for time-frequency analysis of nonlinear and non-stationary signals, its multivariate extensions are only emerging; yet, they are a prerequisite for direct multichannel data analysis. An important step in this direction is the computation of the local mean, as the concept of local extrema is not well defined for multivariate signals. To this end, we propose to use real-valued projections along multiple directions on hyperspheres ( n -spheres) in order to calculate the envelopes and the local mean of multivariate signals, leading to multivariate extension of EMD. To generate a suitable set of direction vectors, unit hyperspheres ( n -spheres) are sampled based on both uniform angular sampling methods and quasi-Monte Carlo-based low-discrepancy sequences. The potential of the proposed algorithm to find common oscillatory modes within multivariate data is demonstrated by simulations performed on both hexavariate synthetic and real-world human motion signals.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3